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Steady waves of finite amplitude induced by pressure periodically distributed 
along the fluid surface and disappearing when this pressure becomes constant are 

called here induced waves. Steady waves of finite amplitude occurring under 

constant surface pressure at particular velocities of the stream are called free 
waves. Induced capillary-gravitational waves at the surface of an infinitely deep 

fluid were investigated in IJl, 21, while similar free waves were analyzed in [3,4], 

The possibility of concurrent existence of both kinds of such capillary-gravi- 

tational waves of small but finite amplitude at some particular velocity of the 
stream at infinite depth is considered below. These waves are called composite 

waves. When the varying component of pressure distributed over the surface be- 

comes identically zero, these waves do not disappear but are transformed into 
free waves. 

The problem is considered in a rigorous formulation and reduces to the solu- 

tion of three nonlinear equations one of which is integral and the remaining two 

transcendental. The pressure at the surface is defined by an infinite trigonometric 
series whose coefficients are proportional to integral powers of some dimension- 

less small parameter, which are by two units higher than their index number. 

The theorem of existence and uniqueness of solution is established, and the 

method of its proof is indicated. Derivation of solution in the form of series in 
powers of the small parameter mentioned above with any approximation is des- 

cribed. The first three approximations are completely calculated. An approxi- 
mate equation of the wave profile is presented. Purely gravitational composite 

waves were considered in [5]. 

1. Statement of problem rnd derivation of br#ic Cquation(. Let 
us consider a plane-parallel steady motion of a perfect incompressible heavy fluid boun- 

ded only from above by a free surface subjected to pressure p0 = pO’ f p,,(z), where 

PO ’ = const , and pa(x) is a specified periodic function of the horizontal coordinate 

Z. The stream is assumed to flow from left to right at specified constant velocity C at 

infinite depth. As already indicated, induced waves will occur at any velocity c when- 
ever the term p&x) is present. In the absence of p,(z) free waves appear at certain 
particular values of C. It is assumed here that the pressure at the free surface contains 

both of these terms. The free surface represented in coordinates attached to a wave pro- 
gressing at velocity c , has the form of a stationary periodic wave. We seek waves which 

do not disappear but for PO(z) z 0 and specific velocities c are transformed into free 
waves. As already indicated the latter are called composite waves. 

Let the unknown composite wave and pressure p,(z) be symmetric about the vertical 
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drawn through the crest. We superpose the y-axis of an orthogonal system of coordinates 
xy on the axis of symmetry and direct that axis upward. We locate the coordinate ori- 
gin 0 at the point of intersection of the y -axis with the free surface and direct the x - 

axis to the right. 

We take the plane of flow xy as the plane of the complex variable z = 5 + iy. 
Let cp denote the potential of velocities, 9 the stream function, w = 4, -j- i$ the com- 

plex potential of velocities, and u and V denote the projections of the velocity vector 

q on the coordinate axes, We then have 

dW/dZ = - U + iv, U = - @I 1 ax, V =I _ drp j ay 

To derive the basic equations of this problem we first conformally map the region 

occupied by a single wave and represented by a vertical infinite half-band bounded from 
above by a wave-like curve on the half-band 0 < Q, < d, 0 < 9 < cm in the w - 

plane, and then map this half-band into the interior of a unit circle whose center in the 

plane u = u1 + iu 1 lies at the coordinate origin. It is assumed that the wavelength 
1 corresponds to the period of function ps(~). The mapping is carried out by formula 

w=&Inu (1.1) 

which transforms the wave profile into the circumference of the unit circle with a slit 
along the radius arg u = 0. Mapping of circle / U 1 < 1 in the region of a single wave 

in the z -plane is determined by formula 

cl.7 1 pw _- -- 
dU 2ni 7’ o(u)=@+iz (1.2) 

Since function 0 (u,) is holomorphic, it can be represented by a Taylor series inside the 

circle. Owing to the symmetry of the wave, the coefficients of this series must be real. 

From (1.1) and (1.2) we obtain 
du: / & -L-;- -Ce+i@ 

This implies that throughout the stream function @ is equal to the angle between the 

velocity vector q and the x -axis and that 

Q = ) $I 1 =z cef (1.3) 

Note that in the expansion of w (u) the free term An = 0, since at infinity the velo- 
city of the stream is equal c and is parallel to the x-axis. 

For 16 = eia (8 is the angle of the position radius to the us-axis) (1.2) yields a dif- 
ferential equation ; separating in it real and imaginary terms and integrating, we obtain 
for the wave profile the parametric equation 

z = -&(nlccls*(,,drl, 

0 
y = - & * s e-r(n) sincD(s$dTl (1.4) 

0 
where 

r (r) = z (11 rl)t CD (?I) = cf, (1: 9) 

It follows from (1.4) that for solving the problem it is necessary to determine besides 

@ (8) also z (0). The expansion of function o (u) shows that these functions can be 
represented by the following t$gonometric series 

-z(0) = 2 n,cosne, CI, (0) = 2 A, sin n0 (I. 5) 
It=: ?I=1 
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where in accordance with the previous statement A O = 0 . Expansions (1.5) satisfy 
the condition of symmetry of the unknown wave about the vertical passing through its 

crest 
We represent the boundary condition along the surface by the Bernoulli integral 

PIP =c--gY---~2!? (1.6) 

where C is a constant, g is the acceleration of gravity, and p is the density. At the 

free surface the difference of pressures is balanced by the resultant of surface tension 

forces. By the Laplace law for these forces we have 

P-P,,=~cLIR (1.7) 

where p is the pressure from the side of the fluid, p. = po’ + p,(s) is the pressure 
from outside the free surface, p is the capillary constant, and R is the radius of curva- 

ture at points of the surface. Expressing the curvature in terms of d@ / de, we obtain 

Substituting expression (1.8) for p into (1.6) and taking into account (1.3). we obtain 

(1.9) E=y &-t 
d0 L - 8 - + xye-5 - po* (x) e-5 

1 

wp 6 _ 2 VP -PO’) 
v=-@p - pea ’ 

x = -$) po* (5) = y 0.10) 

where 2 and y which are functions of 8 are determined by formulas (1.4). Taking into 

account the formula for y and separating in the right-hand part of (1.9) terms which 

are linear with respect to CD and ‘t, we obtain 

xe* s [e4(fl) sin 0 (11) - CD(rl)] dtj - 
0 

x~~(ll)drl+xe’S~(rl)-s(e,(c-.--i+~ 

0 0 

It is assumed here that with an accuracy to within the constant appearing in po’ 

PO* (4 = 5 
2nn 

En+%& co.9 7 5, s F9 = PO* b (@I (1.12) 
VI=1 

where e is a small positive dimensionless parameter and d, are specified real numbers. 
The series Zen& is convergent in the circle ea > 0. To determine S (0) it is ne- 
cessary to substitute in (1.12) the values of z (0) / h. obtained from the equation 

9 

x (0) 1 ’ 
-=-- 

h 23-t s e-+(n) cos 0 (q) dq 
0 

which follows from (1.4). 

(1.13) 



282 Ia.l.Seiterzh-Zen'kovlch 

Let us determine more accurately the formulas for parameters. In the case of a free 

wave S (f3) zz 0 and it is necessary to set c2 = c*~(I - e”) , where Cam is defined 

by the following formula [I] for a free linear capillary-gravitational wave of length h: 

Taking into consideration the indicated expression for c, from (I, 10) we obtain 

v 5 & c*s (1 - &a) = Y(O) (1 - Es), 
hPC*2 

v(O) = 5 (1.15) 

& x = ncf (1 - 65) = 
x0 (l+~l&q, x0= g$ 

S~s~tution of these expressions into (1.11) yields 

dtD = y(O) 
de I 

6 +-(S+i)rix,i@(M+ (X.16) 

X0 ~~“‘~~(q)d7iS(B)(~-~~+~[~,~,s,~l}-~~~~E*~...} 
n=r 0 

where the expression omitted in the second braces must be the same as in the firstbraces. 

Equality (1.16) defines the relation between functions z (0) and tB (0) at the circum- 
ference f u 1 = i. The Dini relations [6] 

are valid for these. 

We transform the terms in braces in (1.16), which are linear with respect to ‘c, CD and 
e , by using formulas (1.17) and integration by part, We then combine in the first braces 

the terms (with coefficients 2 and - x0) with the same integrand &I) / dq and with 

different kernels 

where Xa(rh 0) is the first iteration of kernel Iii (q, 0). 
The constants v(O) and x0 in Eq, (1.16) are considered to be specified, since Ca2 is 

fixed and 6 is determined by the condition of periodicity @ (9) =2 cb (Cl + 2 n). 
Since e appears in the righthand part of Eq, (X.16). its solution and consequently also 
S depend on E. Let us set 6 = 6, + 6’(e) (1.18) 

The condition of periodic&y at e -+ 0 implies that 6, = 1, since for this the solution 
6 (a) also tends to zero, After all ua~forma~o~ with allowance for (1.18). Eq. (1.16) 
assumes the final form (dots in the second braces denote the last six terms which are the 
same as those in the first braces) 
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p trl, 0) = i ‘pn (qL qn (‘) , n* 
vv,=-, 

A=1 n 2n-xxr (p,(e) = T 

where v, are eigenvalues and (P,,(8) eigenfunctions of kernel K*(q, 0). It is also as- 
sumed that v(O) = vr , and parameter x0 is selected so that the eigenvalue v1 is simple 

and positive Cl]. Note that for v(O) = v, parameter c*s is determined by the speci- - . 
fied formula, since (1.14) follows from formulas (1.19) for Y, and from 
and x0. 

The condition of periodicity for function 0 (0) yields the relation 

6’(E)= -xo~Ks(%0)5(11Jdrl+ 
0 

2n 2x 

(l.l5) for Y(O) 

(1.20) 

G’ 6’ (E) + x0 

0 0 

The problem has been thus reduced to the determination of functions 5 (0, r) P 

d 0 / d 8 and x (Cl, e) / 31 and of the constant 6 = 1 -j- 6’(e) from the system of 

Eqs. (1.13),(1.19) and (1.20),and r (0, e) determined by (1.17) and 
R 

(1.21) 

Using (1.13) for eliminating 2 (0, E) / 3L in Eqs.(1.19) and (1.20) and taking ~(0, e) 

and CD (8, 8) from (1.17) and (1.21), respectively, we reduce the system to two equa- 

tions, viz. : (1.19) and (1.20). Equation (1.19) is nonlinear integral with respect to 

< (0, e) with kernel K*(tj, 0) and parameter v(s) = vi. Equation (1.20) is nonlinear 

and transcendental with respect to the constant 6’(e). However it is more convenient 

to consider the system of three equations without resorting to the above transformation. 
Then the only integral equation which is nonlinear with respect to 5 (0, E) is Eq, (1.19); 
the remaining equations as well as (1.19) must be considered transcendental and non- 
linear with respect to x (8, E) / I and a’(&) with the operators and functionals linear 

with respect to the unknown functions. 

2. Solution of basic equotionfi of the problem. We seek the solution 



of the system of Eqs. (1.13), (1.19) and (1.20) in the form of series in powers of para- 
meter e. For each of the coefficients of the expansion of function 5 (8, E) we obtain 

a linear integral Fredholm equation of the second kind with kernel K*(q, 0) and para- 

meter v(O) == vt (vl is the first eigenvalue of that kernel). For the first coefficient of 

that expansion we obtain a homogeneous integral equation whichis solved by the second 

Fredholm theorem. Equations for the coefficients of all subsequent approximations are 
nonhomogeneous, and are solved by the third Fredholm theorem. The solution of each 
of these equations is in the form of a sum of solution of a homogeneous equation with 

undetermined coefficient C tn (for the n-th approximation) and of the particular solu- 

tion of the nonhomogeneous integral equation. The coefficient C,, is determined by 
the condition of the equation solvability in the (n + 2)-nd approximation. 

Thus each of coefficients Ctt, c,, and C,, is determined by the condition of sol- 

vability of equations in the fourth, fifth and sixth approximations. 
For the coefficients of expansions of remaining quantities we obtain a system of linear 

algebraic equations, That system, which is always solvable, yields for the coefficients 

of a given approximation explicit expressions in terms of quantities determined in pre- 

ceding approximations. 

Determination of the first three approximations. Below we 
przskit*third approximation expressions for 5 (0, e), 5 (0, E) ] h and 6’(~) 

5 (0, F) = E c,, cos 8 + tic,, cos 2 8 + 83 (c,, C~S 0 + (2.1) 

c,,cos 3 0) 

cc te, E) 
h. = - -& Cl1 sin 8 - & (Cl,* + Cz,) sin 20 - 

s [Cl3 sin 8 + f (+ Clls + +- Cl& + -+ Css) sin 301 

6’ (E) = - &X&l + -; X” (C,,” - C,,) - 

where 
Cl, = 0 (see (2.5)), C,, = - 3/4 x Cl12v1v2 / (v2 - vl) (2.2) 

c,, = ‘l&,, [C,,2 (1 - 11/,x,) - 13/s xoc,,l V’IL’g / (v3 - VI) 

Coefficient Cl3 has not been calculated, because the fifth approximation required for 

its determination was not computed; C,, is determined by the equation 

W4 + Vse x~2Y,Ya/ (Y2 - VI)1 c,,3 - x,1 - d, = 0 (2.3) 

Note that for d, = 0 Eq. (2.3) is the equation which determines C,, in the case of a 
free wave. 

2.2. Determination of further approximations. As Feviously stated, 
the coefficient C,, is determined by the solvability condition of the equation for h(e), 

which leads to the following relation: 

C,,C,,2[1 + 9l*x,%7, / (y2 - 4 I =o (2.4) 

Since C,, # 0 and, as can be shown, the expression in brackets is also nonzero, hence 

C,, = 0 
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It can be shown by the method of mathematical induction that, as in the case of 

?z = 3 . S,(0), &l(e) and 8, are similarly uniquely determined for any positive inte- 

gral n > 3. The equation for C,, is linear beginning with n = 2, and the coeffici- 

ent at C,, is the same as in (2.4). 

3. Determination of the wave profile, The wave profile in parametric 
form ~(0, E) and ~(8, E) is determined by formulas (1.4) into which it is necessary to 

substitute 0 (f3, E) and T (0, E). We recall that functions % (6, 8) and @ (0, E) are 
determined in terms of 5 (6, E) by formulas (1.17) and (1.21), respectively. Eliminating 

0 in the parametric equations, we obtain for the profile anequation of the form y = 

Y (z, E). 
The equation of the wave profile, accurate to within third order terms, is 

Y (~9 e) = k-l{& C,, (cos kx - 1) + ‘i, is2 (cl,2 - c,,) (i- 
cos 2 kz) + ‘i, e3 105 C,, + g/4 C,,C,,) (cos kx - I) + 

(‘/3cn3 - ‘/q C,,C,, + 2/3 C,,) (cos 3 kx - I)]} 

(3.1) 

where k = 2 n / h and coefficients Cij are defined by formulas (2.2) and (2.3). 
Note. As stated in Sect.1, the coordinate origin is located at the crest of the wave, 

hence for z close to zero y must be negative. Analysis of the principal term in (3.1) 

shows that Cl1 > 0, and Eq. (2.3) implies that to satisfy this condition it is necessary to 

set d, > 0. 

4. Existence and uniqueness of solution of the problem. Using 
the Liapunov-Schmidt methods and their development [7] , we can establish the follow- 

ing theorem. 

Theorem, The system of Eqs. (1.13). (1.19) and (1.20) has the unique solution 

5 (0, 8). x (0, E) / h and b’(e) cd’(~) = 6 (E) - 1) which is small with respect to 
E and continuous with respect to 8 (0 < 8 < 2 a-c) and that solution is an analytic 
faction of 8 for small 1 E 1 < El < 13,. 

The proof of the theorem is similar to that presented in [8, 91. 
The absolute and uniform convergence of series for 0 (8, e) and z (8, E) follows 

from the theorem. The convergence of series in powers of E for the integrand functions 

in (1.4) follows from general theorems on the analysis of the substitution of series into 
series. The convergence of the series, whose approximate sum is defined by formula 

(3.l),is established on the basis of general theorems of analysis. 

Note For solving this problem function p 0* (5) was specified in the form (1.12), 

which made it possible to derive the solution in the form of series in integral powers of 

parameter E. If it is assumes that oD 

then it is possible to show by analyzing the branching equation of the Liapunov-Schmidt 
method that it would be necessary to construct the solution in the form of series in po- 
wers of 8”‘. 
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We develop an approximate theory of stationary propagation of the planar front 

of a two-stage parallel exothermic reaction in a condensed medium and in a gas. 
In constructing the solutions we use the method of matched asymptotic expan- 
sions. As parameter of the expansion we employ the ratio of the sum of the ac- 
tivation energies of the reactions to the terminal temperature, the latter being 
determined in the course of solution of the problem. We show the characteristic 

limiting modes corresponding to the various parameter values which appear in 
the problem. For each of these modes we obtain approximate analytical expres- 

sions for the wave velocity, the distribution of concentrations, and the terminal 
temperature. 

1. Statement of the problem. The stationary propagation of the planar 


